PLANE HARMONIC WAVES IN AN INFINITELY LARGE
THERMOELASTIC MEDIUM WITH A FINITE VELOCITY
OF HEAT PROPAGATION

I. M. Shter UDC 536.2.01

The properties of coupled thermoelastic harmonic waves are analyzed, with the finite veloc-
ity of heat propagation taken into account.

Let a plane wave travel in an infinitely large medium along the x,~axis, this wave being a harmonic
function of time. Such a wave may be excited thermally or mechanically. At any instant of time such a
plane wave isg fixed in any plane orthogonal to the direction of travel x; and the temperature is constant.
For this reason, the displacements u; and the temperature 6 are functions of the space coordinate x| and
of time t, In this case theequationsof coupled thermoelasticity with a finite velocity of heat propagation
become much simpler:
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All quantities vary harmonically and, therefore,
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Since transverse waves at a fixed frequency w-travel at a constant velocity, without causing volume
changes or distortions of the temperature field, let us analyze the system of equations (4),

We eliminate from (4) the temperature 6 and seek the solution to the resulting equation in the form:

ikx. ikx
u’f:uoe : 6f= € '

)
which yields the characteristic equation
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where & = mna is the coupling parameter,
We now calculate the roots of Eq. (B):
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When € = 0, we have
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Denoting the phase velocity by VB (B =1, 2) and the attenuation factor by < B» we have
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Inserting (7) into (4) yields
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Now we can write the solution to system (4) as
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We have obtained here expressions for longitudinal thermoelastic waves traveling at a constant frequency
along axes x; and —x.

Taking into account (11), we rewrite (13) and (14) as follows:
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Formulas (15) and (18) describe a modified elastic wave and a heat wave, respectively, these waves being
subject to attenuation and dispersion, while without coupling between the temperature field and the strain
field taken into account there would be neither attenuation nor dispersion.

We now transform (9) after introducing the following notation
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with M =C,/ V.

The solution to (18) is
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The roots depend on the natural frequency of the material wX = C}/a, the coupling parameter &, the Mach
number M, and the parameter ¥ = w/wX, For feasible mechanical vibrations we may assume that y <1,

We next expand (20) into a power series in x and change to k;:
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Separating the real part and the imaginary part of (22), we have
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where Cg = C((L + 8)1/2 is the adiabatic phase velocity of the expansion wave.
According to (11), we define the phase velocity as follows:
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When x <1, therefore, the phase velocity is independent of the frequency «, i.e., the expansion wave
has no dispersion, but depends on the velocity of heat propagation instead.

Formula (25) can be used for defer mining the velocity of heat propagation from tests, which requires
an accurate measurement of the phase velocity of the longitudinal elastic wave, inasmuch as Cg=Ci(1
+e)/2, ¢} = (A +2p)/p, etc. From (25) one can calculate M =Cy/Vp for x < 1. Coefficient Imk; =4, is -
a positive quantity and, therefore, the amplitude of thewave decreases exponentially within the heat con-
ducting medium.

Analogously we can determine the phase velocity V, and the attenuation factor 4, of a quasithermal
wave,

When the velocity of heat propagation is infinite, then M = 0 and
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In this particular case one may assume that, when M > 1, the MS(L + €) term contributes most to the
phase velocity and, for this reason, one may rewrite (25) as
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For the wave considered here we will determine now the relative energy dispersion AW /W, where
AW denotes the energy dispersed during one stress cycle and W denotes the elastic energy stored in the
body up to the instant of time when the strain becomes maximum. Let w and u, be successive displacement
amplitudes, Approximately, AW /W can be expressed as
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The phase velocity of a thermoelastic wave is equal to the adiabatic phase velocity of the expansion
wave when the velocity of heat propagation is infinite [1, 3], but, according to Eqgs. (26) and (27), is lower
than that by an amount of the order of about (M®A% /8)Cg when the velocity of heat propagation is recognized
as finite, When the relaxation time in solids, as shown in [2] for conductors at M > 1, is accounted for,
then obviously the decrease in the phase velocity ceases to be negligible. In polymers at M =1 the de-
crease in the phase velocity is insignificant, even when the velocity of heat propagation is properly con-
sidered as finite. An analysis of the relative energy dispersion according to (31) indicates that, when the
velocity of heat propagation is assumed infinite (M = 0), it is higher than the relative energy dispersion
at a finite velocity of heat propagation.

Thus, the preceding analysis of coupled harmonic thermoelastic waves has shown that not accounting
for the finite velocity of heat propagation will yield a higher value for the phase velocity of thermoelastic
waves in metals and also in a higher value for the relative energy dispersion. The result is analogous
for thermoelastic waves traveling in polymers, but the discussed effects are weaker. In polymers with
a coupling parameter € within the 0.2-0.5 range these effects may not be disregarded.

NOTATION

u is the displacement;

6 is the temperature;

C, is the longitudinal velocity of somd in the medium;

C, is the transverse velocity of perturbations in the medium;
w is the frequency;



is the thermal conductivity;

is the velocity of heat propagation;
are the Lamé constants;

is the thermal diffusivity;

is the relaxation time.
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